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ABSTRACT

The differentiation matrix for a Daubechies-based wavelet basis will be constructed

and 'superconvergence' will be proven. That is, it will be proven that under the

assumption of periodic boundary conditions that the differentiation matrix is accurate

of order 2M, even though the approximation subspace can represent exactly only

polynomials up to degree M - l, where M is the number of vanishing moments of the

associated wavelet. It will be illustrated that Daubechies-based wavelet methods are

equivalent to finite difference methods with grid refinement in regions of the domain

where small-scale structure is present.
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1 Introduction

The term differentiation matriz was coined by E. Tadmor in his review on spectral

methods [1]. The term denotes the transformation between grid point values of a

function and its approximate first derivative. This matrix is a product of three ma-

trices.

The first matrix C is constructed as follows: assume that the point values of a

function f(x) (where a < x < b) are given at N points zj for 0 < j < N- 1.

Thus a vector of numbers f(zj) is given. From this vector one can reconstruct an

approximation to the function f(x) for every point x in the interval. This approxima-

tion (denoted byPNf) itself belongs to a finite dimensional space - in pseudospectral

methods it is the global interpolation polynomial that collocates f(zj) and in finite

differences or finite elements it is a piecewise polynomial. This transformation be-

tween f(zj) and PNf, defines the matrix C. Of course this matrix depends on the

special basis chosen to represent PNf. A good example is the Fourier interpolation

procedure in which the basis is the set of complex exponentials.

The second matrix D results from differentiating PNf, and projecting it back to

the finite dimensional space. Thus D is defined by the linear transformation between

PNf and PN_PNf.

The last matrix is the inverse of the first matrix. Basically, since we are given the

approximation PN_PNf we can read it at the grid points z_. Thus the differentiation

matrix 79 can be represented as 79 = C-1DC.

In this paper the wavelet differentiation matrix will be examined. As with other

basis sets, as outlined above, it is a product of three matrices. Under the assumption

of periodicity of f(x), however, the matrices C and D commute allowing D to operate

directly on the vector of numbers f(zj). That is, the differentiation matrix 7P is simply

D: 79 = D. Furthermore, the matrix D differentiates samples of polynomials exactly,

i.e., the action of D is equivalent to a finite difference operator with order of accuracy



dependingon the order of the wavelet chosen.

More precisely, the following outlines the proof of this assertion:

• Given a periodic function f(x), let C be the mapping from evenly-spaced sam-

ples of f(x) to the approximate scaling function coefficients on the finest scale:

C : f--* _. Due to the periodicity of f(x), C is circulant in form.

• Let D be the mapping from the exact scaling function coefficients of f(x) to

scaling function coefficients of f'(x): D : _ _ so. Once again, due to the

periodicity of f(x), D is circulant in form.

• The matrix operator D can differentiate exactly evenly-spaced samples of poly-

nomials, i.e., D has the effect of a finite-difference operator. The order of exact

differentiation depends on the order of the wavelet used.

• All circulant matrices with the same dimensions commute, therefore the oper-

ator D can be applied directly to f:

fl = C-1DC /,

or simply,

f' = Dr,

and this will complete the proof.

This paper contains five sections:

§1) This introduction.

§2) Standard definitions of wavelets and scaling functions are given.

§3) The general approximation properties of wavelets will be discussed along with

the quadrature formula needed to approximate the scaling function coefficients of a

function.
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§4) This is the most important sectionof this paper. It will be proved that the

action of D is equivalent to a finite difference operator.

§5) The results of sections (3) and (4) are combined for the desired conclusion.

In addition, the following two related topics are explored in the first two appen-

dices:

Appendix A)For wavelets supported on (0,3M)it will be shown that f ¢(x)xmdx =

(f ¢(x)xdx) '_.

Appendix B) The moments of the scaling function ¢(x) will be calculated.



2 Wavelet Definitions and Relations

The term wavelet is used to describe a spatially localized function. 'Localized' means

that the wavelet has compact support or that the wavelet almost has compact sup-

port in the sense that outside of some interval the amplitude of the wavelet decays

exponentially. We will consider only wavelets that have compact support and that

are of the type defined by Daubechies [2] which are supported on [0, 2M - 1], where

M is the number of vanishing moments defined later in this section.

To define Daubechies wavelets, consider the two functions ¢(x) and ¢(x) which

are solutions to the following equations:

L-1

where ¢(x) is normalized,

Let,

and

¢(x) = v_ _ hk¢(2x- k),
k=O

L-1

¢(_) = v_ _ gk¢(2_- k),
k=O

(1)

(2)

/__o ¢(x)dx = 1. (3)
OD

¢_(x)= 2-_¢(2-s_ - k), (4)

_- jCt(_) = 2-,¢(2- •- k), (5)

where j, k E Z, denote the dilations and translations of the scaling function and the

wavelet.

The coefficients H = L-1 L-1{gk}k=0 are gk{hk}k=0 and G = related by = (--1)khL_k for

k = 0, ..., L - 1. Furthermore, H' and G are chosen so that dilations and translations

of the wavelet, ¢_(x), form an orthonormal basis of L2(R) and so that ¢(x) has M

vanishing moments. In other words, ¢_(x) will satisfy

//_,,,_s,,,= ¢_(_)¢;_(_)d_, (6)
oo



where _k, is the Kronecker delta function. Also, ¢(x) = ¢0°(x) satisfies

¢(x)xmdx= 0, (7)
(3(3

for m = O, ..., M - 1. Under the conditions of the previous two equations, for any

function f(x) 6 L2(R) there exists a set {djk} such that

where

= E E (S)
jEZ KEZ

Fdjk = f(x)¢i(x)dx. (9)
O0

The number of vanishing moments of the wavelet ¢(x) defines the accuracy of

approximation. The two sets of coefficients H and G are known in signal processing

literature as quadrature mirror filters [3]. For Daubechies wavelets the number of

coefficients in H and G, or the length of the filters H and G, denoted by L, is related

to the number of vanishing moments M by 2M = L. For example, the famous Haar

wavelet is found by defining H as h0 = hi = 1. For this filter, H, the solution to

the dilation equation (1), ¢(x), is the box function: ¢(x) = 1 for x 6 [0,1] and

¢(x) = 0 otherwise. The Haar function is very useful as a learning tool, but it

is not very useful as a basis function on which to expand another function for the

important reason that it is not differentiable. The coefficients, H, needed to define

compactly supported wavelets with a higher degree of regularity can be found in [2].

As is expected, the regularity increases with the support of the wavelet. The usual

notation to denote a Daubechies wavelet defined by coefficients H of length L is DL.

It is usual to let the spaces spanned by ¢_(z) and _b_(x) over the parameter k,

with j fixed, to be denoted by Vj and Wj respectively:

span d_(x),
VJ _ k6Z (lo)

span
Wj _-- k6Z (11)



The spaces Vj and W i are related by [2]

... c V_ c Vo c V__ c ..., (12)

and that

v_.= v_+,_ wj+,. (13)

The previously stated condition that the wavelets form an orthonormal basis of L2(R)

can now be written as,

L2(R)=_Wj. (14)
jEZ

Two final properties of the spaces Vj are that

N Vj-- {0), (15)
jEz

and

U Vj= L2(R). (16)
jEZ

Properties of the Semi-Discrete Fourier Transform (SDFT) of the filter H will also

be needed. The following definition is not exactly the SDFT but a constant times the

SDFT:
k=L-1

_I(_) = 2 -1/2 Y_ hke 'k_. (17)
k----O

This DFT satisfies the following equation, see [4]:

1_9(_)1_+ I#(_ + _)1_= 1. (18)

Solutions of equation (18) have the following properties, see [2]:

/:/(_) = (1(1 + ei_))M Q(ei_), (19)

where M is the number of vanishing moments of the wavelet and Q is a trigonometric

polynomial such that,

JQ(ei_12 = p(sin2(_/2)) + sin2U(_/2)R( 1 cos_), (20)



where

k=M-1 (e(u)=

and R is an odd polynomial such that,

M - 1 + k _ yk (21)k
I

0 < P(y) + yMR(1/2 -- y) (22)

for 0 < V -< 1, and

if M > 2 or

sup (P(y)+ yMR(1/2 --y)) < 2_(M-a) (23)
o<u<l

2 2

1-2Ix I _ R(x) _ 1 + 2Ix I' (24)

for Ix[ _< 1/2, if M = 1. The important point here is that /_(_¢) has a zero of order

Mat_=r.

Of course, infinite sums and unions are meaningless when one begins to implement

a wavelet expansion on a computer. In some way one must limit range of the scale

parameter j and the location parameter k. Consider first the scale parameter j. As

stated above, the wavelet expansion is complete: L2(R) = _jez Wj. Therefore, any

f(z) e L2(R) can be written as,

jEZ kEZ

where due to orthonormality of the wavelets d_ = f_ f(x)gjk(X ). In this expan-

sion, functions with arbitrarily small-scale structures can be represented. In practice,

however, there is a limit to how small the smallest structure can be. This would

depend, for example, on how fine the grid is in a numerical computation scenario or

perhaps what the sampling frequency is in a signal processing scenario. Therefore,

on a computer an expansion would take place in a space such as

Vo = Wl o W2 e . . . e wj e vj, (25)



and would appearas,

J

kEZ j=l kEZ

where again due to orthonormality of the basis functions d_ = f__o_ f(x)_(x), and

s_ = Z_oo f(x)r}_(x). In this expansion, scale j = 0 is arbitrarily chosen as the finest

some that is needed, and scale J would be the scale at which a kind of local average,

¢_(x), provides sufficient large scale information. In language that is likely to appeal

to the electrical engineer it can be said that ¢_(x) represents the direct current portion

of a signal and that _(x) represents the alternating current portion of a signal at,

very roughly, frequency j. As stated above, one must Mso limit the range of the

location parameter k. In this paper this is done by assuming that f(x) is a periodic

function. The periodicity of f(x) induces periodicity on all wavelet coefficients, s_

and d_.

This completes the definition of wavelets. The next section will discuss function

approximation in a wavelet basis.



3 Approximating in a Wavelet Basis

Scaling functions and wavelets were defined in the previous section. The goal of this

section is to find the coefficients in a wavelet expansion. More precisely, the scal-

ing function coefficients at the finest scale, s'0, will be approximated. The key to

this approximation is the matrix C which maps evenly-spaced samples of a periodic

function to the approximate scaling function coefficients. This matrix C has the de-

sirable property of being circulant in form with the ramification that C will commute

with any other circulant matrix, particularly the derivative matrix R °, the subject of

section (4). An example of C is given at the end of section (3.2).

The scenario for this section is as follows: let the finest scale be scale j = 0, i.e.,

at this scale all relevant small scale structures in the function have been captured and

represented. One seeks an expansion of a function f(x) in terms of ¢_ in the space

V0. With the projection Pyo defined as Pyo : L2(R) _ Vo such an expansion has the

following form:

Pvof(X ) = y_ o oskCk(x), (27)
kEZ

where due to the orthonormality of the basis functions, (_j f_¢_ 0 0= ¢i(x)¢j(x)dx, the

coefficients s_ are given by

Fs °°,= f(x)¢°k(x)dx. (28)
oo

Once the s_ have been found one would usually then find the scaling function and

wavelet function coefficients at more coarse scales. This can be done by using equation

(29) to get s_, for j = 1,...,J and by using equation (30) to get d_ for j = 1,...,J.

These equations are derived respectively from equations (1) and (2), see [4], [5],

2M

4 E J-'= h,_s,,+2k_2, (29)
n=l

and

2M

4 E J-'= g.s.+2k__. (30)
n----1
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In this section,however,the decompositiononto more coarse scales will not be cal-

culated. The important step for this section is the approximation of the integral

s o = f°°oo f(x)qbO(z)dz. Let _,_ denote the approximation to s 0. The quadrature for-

mula for this integral encompasses the approximation properties of scaling functions,

and hence wavelets.

This section contains 3 subsections:

§3.1 ) The approximation properties of scaling functions will be discussed and the

quadrature formula to estimate the integral fooo f(x)c_O(x)dx will be derived.

§3.2 ) An example using the results from section (3.1) is given for the Daubechies

wavelet D6.

§3.3 ) The example from section (3.2) leads to a circulant matrix for the matrix

C. Circulant matrices will be defined and the ramifications of circularity will be

discussed.

3.1 Quadrature Formula for Scaling Function

In this subsection the coe_cients s o will be approximated. Before stating the appro-

priate quadrature formula, however, the order of accuracy of a wavelet approximation

is discussed.

3.1.1 Approximation Properties of Scaling Functions

This subsection comes essentially from [6]. The approximation properties of scaling

functions are determined by the Discrete Fourier Transform of the filter H. That is,

if

1 _ hkeik_
= k=0

has a zero of order M at _ = Ir then there are a number of consequences:

(31)

1. The polynomials 1, x, ..., x M-1 are linear combinations of the translates of the

scaling function _bO.
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2. Smooth functions canbe approximatedwith error O(hM), where h denotes the

grid size, i.e., there exist a set s_, where j is fixed, and there exists a constant

C such that

I/(x) - _ _¢_,(x)f___ch*'lf_*'l(_)l, (32)
k

where the norm I" I is the L2 norm.

3. The associated wavelet has M vanishing moments,

f x_¢(_)d_ = 0

for m = 0, ..., M- 1.

Other ramifications can be found in [6]. These approximation properties determine

the accuracy of the quadrature formula used to approximate the scaling function

coefficients s_ which is derived in the following section.

3.1.2 Derivation of Quadrature Formula

It is important to note that all wavelets in this paper are of the usual Daubechies

type, i.e., the support of a usual Daubechies wavelet D2M is [0, 2M - 1] where M is

the number of vanishing moments of the wavelet. For this subsection this support size

is particularly important to keep in mind because there does exist an orthonormal

family of wavelets which are supported on [0, 3M - 1] and which have a very simple

quadrature formula based on the vanishing moments of the wavelet (see appendix A)

but this is not the wavelet being used in this paper.

Given the approximation properties of the scaling function from the previous

subsection, one can now seek a quadrature formula which is exact when f(x) is a

polynomial up to order M - 1: f(x) = p(x) E PM-1. That is, there exist a set of

coefficients M-1{ct}l=0 such that

oo M-1

foop(_)¢°_d_= _ c,p(1+ k), (33)
I=0

11



for p(x) PM-1. If the integral is shifted the above equation becomes,

M-1

f_,o P(V + k)C_oo(V)dy = _ ctp(l + k). (34)
co 1=0

{ct}t=o can be found [9] by solving the following linearMore simply, the coefficients M-1

system:
M-1

ff x  (x)dx = I%, (35)
co /=0

= ..., - {el}t=0 provide the desired quadraturefor m O, 1, M 1, and the coefficients M-,

formula. That is, the coefficients, _0, which approximate s'0 are found from,

M-1

o"° -- _ ctf(l + k). (36)
1=0

{ct}l=o yield the circulant matrix C.When placed in matrix form the coefficients M-1

A more thorough discussion of circulant matrices will be given in §(3.3) after the

example of the next subsection has been completed.

Note that since the above derived quadrature formula is exact for p(x) E PM-,

the coefficientscr_approximate the coefficientss_ with error of order M. Also, note

that the derivationof the quadrature coefficientsdepends only on the moments of the

scalingfunction,fo__coz"c_(x)dz. In the next subsection,the moments of the scaling

{ct}/=0 will be found forfunction will first be calculated and then the coefficients M-1

the De wavelet. The wavelet De is chosen for no other reason than that D2 and D4

receive considerable attention from other sources and that D6 is slightly less trivial

than D2 and D4 while remaining manageable.

3.2 Example with the Daubechies Wavelet D6

Recall from the previous subsection that the immediate goal is to approximate the

scaling function coefficients of a function at scale j = 0. Specifically, in this section

the objective is to derive the matrix form of the mapping from evenly-spaced samples

of a periodic function f(x) to the scaling function coefficients on the finest scale s_.

The example will be for the Daubechies wavelet De. Comparable results for the

wavelets D4 and Ds are presented in appendix B.
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Recall from the previous subsection that in order to calculate the coefficients

M-1

{ct}t=o the moments of the scaling function $(x) must first be known. Let MI be

the l th moment of the scaling function ¢(x),

= f ¢(x)x_dx, (37)MI

and let P, be the l th moment of the filter hk,

/*,- E; k%. (38)
k

The zero-th moment, M0, of ¢(x) is 1 by the normalization of ¢(x):

- /_(z)dz- 1. (39)Mo

The zero-th moment of the coefficients hk is found by integrating the dilation equation

which defines $(x):

and let Y = 2x - k to get,

which implies,

(40)

= 1 __, hk f ¢(y)dy, (41)1
2 k

/*o = Y_ hk = 2. (42)
k

That is, the zero-th moments Mo and /*0 are the same for all Daubechies wavelets.

Higher moments for/*l can be found by straight-forward calculation using the coeffi-

cients provided by Daubechies [2]. The higher moments, Ml for l > 0, for the scaling

function can be found from the following equation which is derived in appendix B:

M"=(1)m+l_'-'(m)/*m-lMt't I (43)

For the current example only the moments Mo, 3'/1, and M2 are needed: Mo = 1,

M1 1= 7/.1, and M2 = 1((/.1)2 +/*2). Given these three moments the coefficients

{ct}Mo I can be found from

M-1

/% = f xm¢(x)dx (44)
l=0

13



i M_ #i c_

0 1 2 .1080

1 .8174 1.6348 .9667

2 .6681 1.3363 -.0746

Table 1: Scaling function and filter moments for Daubechies 6 wavelets.

for m = 0, 1, ...,M- 1. Specifically, for the De wavelet the linear system in matrix

form is,

012 cx - M1 ,

0 1 4 c2 M2

(45)

which has the solution Co = .1080, cl = .9667, and c2 = -.0746. In tabular form, the

complete results for De are,

Recall that the quadrature formula used to approximate the scaling function has

the form,
M-1

¢r_ = ___ c,f(l + k). (46)
I=0

If the function f(x) is periodic then in matrix notation the above operation is _0 = Cf

where C for De and on a grid of 6 points is,

(47)C

.108 .967 -.075 0 0 0

0 .108 .967 --.075 0 0

0 0 .108 .967 -.075 0

0 0 0 .108 .967 -.075

-.075 0 0 0 .108 .967

.967 -.075 0 0 0 .108

The important point here is that the above matrix is circulant. The ramifications

of circularity are very important for the thesis of the paper. The definition of circulant

matrices and the properties that they are imbued with is the subject of the next

subsection.

3.3 Circulant Matrices

Strang [7] defines a circulant matrix as a constant-diagonal matrix which is 'periodic,

since the lower diagonals fold around to appear again as the upper diagonals.' A

thorough discussion of circulant matrices is given by Davis [8]. Circulant matrices

14



havethe wonderfulproperty that they can all be diagonalized by the same matrix, the

Fourier matrix: An N× N Fourier matrix has as its ij-th element the entry w (i-1)(j-1)

where w N = 1. The most important ramification for this paper is that matrices which

can be diagonalized by the same matrix commute. That is, the matrix C from the

previous subsection will commute with the matrix R ° which will be derived in section

(1.4).

In general, circulant matrices arise whenever one is performing the matrix version

of periodic discrete convolution. In numerical analysis periodic discrete convolution

arises whenever one differentiates the evenly-spaced samples of a periodic equation

which has constant coefficients. Let us be a bit more precise and illustrate how the

operation of periodic discrete convolution yields a circulant matrix by stating the

following theorem:

Theorem: A finite-length filter of length M applied to N evenly-spaced samples

of periodic function, where N > M, will in matrix form yield a circulant matrix.

Proof: First of all, let the notation remain as above: Co, cl, ..., CM-1 will represent

the finite-length filter and fo, fl, ..., fN-1 will represent the evenly-spaced samples of

one period of the periodic function f(x). Of course, the samples of f(x) are periodic

with period N. The application of the filter _'on the samples of f(x) is the convolution:

M-1

O'k = _ el�k-l,

l=O

where ], is the renaming of the elements of fi so that the previous convolution is

the same as the following expression. Furthermore, keep in mind that fi and fl are

periodic with period N.
M-1

O"k : y_ Clfl+k.

l--O

Using the modulus function to keep the indices of fi within one period, i.e., keep

15



0 < i < N - 1, the above equation can be written as,

M-1

O'k--" E cIfm°d(l+k'N)"

/=0

Now, shift the indices by letting j = l + k to get,

ak -- E Cj-kfmod(j,N)"

j=k

If the length-M filter _" is now 'padded' at the end with zeros so that it is now a

length-N filter then the above equation can be rewritten as,

N-1

_k = E Cm°d(j-k'N) fj"

j=O

This is exactly a matrix multiply g = Cf where the ij - th element of the matrix

C is C_odO-i,N), and this is the definition of a circulant matrix. This completes the

proof.//

Note that the difference between a circulant matrix and a Toeplitz matrix is the

wrapping around effect of the diagonals introduced by the use of the modulus function

for the circulant matrix. That is, a circulant matrix is a special case of a Toeplitz

matrix where the constant diagonals are periodic.

Before leaving the discussion on circulant matrices let one more interpretation be

noted: to say that circulant matrices commute is to simply restate the important re-

sult from signal analysis that convolutions commute. That is, if one has two sequences

c and r, which in the current scenario are periodic, then the order of convolution does

not matter. This is easily proved with the Fourier transform:

A ^^ ^^ A

c * r -'- CT -- TC -_ r * C_ (48)

where _ denotes the Fourier transform of r and '*' denotes periodic convolution. For

this paper, c, of course, would be the quadrature operator and r would be the scaling

function derivative operator which is the subject of section (4). In matrix notation

16



equation (48) is nothing more than,

C. R ° = R °. C (49)

In this section a quadrature formula has been found to approximate the scaling

function coefficients of a given function, f(x). In matrix form this quadrature for-

mula leads to a circulant matrix assuming f(x) is periodic. In the next section the

wavelet derivative operator will be derived, and it will be shown that, once again,

the assumption that f(x) is periodic leads to an operator which in matrix form is

circulant.

17



4 Derivative based on Wavelets

In the previous section the mapping from evenly-spaced samples of a periodic function,

f(x), to the approximate scaling function coefficients on the finest scale, cry, was given.

Recall that _ denotes the approximation to the exact scaling function coefficient sJ,

at scale j and position k. The mapping is nothing more than a quadrature formula

which is exact when f(x) is equal to a polynomial up to order M - 1, where M is

the number of vanishing moments of the wavelet. The question now is how does one

represent the derivative of f(x) in the wavelet basis given that the wavelet expansion

of f(x) is already given.

The answer is given in the following subsections:

§4.1 ) A function f(x) will be expanded in a wavelet basis and the expansion will

be differentiated.

§4.2 ) The results from Beylkin [9] on derivative projections will be given.

§4.3 ) First, it will be noted that one can differentiate a wavelet expansion at any

level of a wavelet decomposition and achieve the same derivative. Second, explicit

wavelet decomposition will be performed accompanied by the appropriate differenti-

ation matrix.

§4.4 ) The similarity between the wavelet-based derivative coefficients and finite

difference derivative coefficients will be noted, and it will be shown that when one

differentiates the wavelet expansion of a periodic function that the effect on the

original function samples is equal to finite difference differentiation.

4.1 Expansion in a Wavelet Basis

The goal now is to find the wavelet and scaling function expansion of a periodic

function f(z). Given f(z) E L2(R) one first projects onto the arbitrarily chosen

finest scale j = 0 of the scaling function $_(z) which generates the space V0, i.e., let

18



Pro be the projection from the space L2(R) to the space Vo, Pvo : L2(R) ---* V0:

N-1

k=O

(50)

where due to the orthonormality of ¢o over k in Vo,

sO = f(x)¢°(x)dx. (51)
oo

Note that in the introduction the projection denoted by PN would be the same as

Pv0 using notation that is more amenable to wavelets. The derivative of Pvof(z) is,

d N-1 ,Pvof(X) = _ s0¢_,(x ). (52)
k=O

d Pvof(X ) is not in V0 and must be projected onto V0. First define theOf course,

inner product < f,g > on L2(R) by

S< f,g >= f(x)g(x)dx. (53)
oo

Now the projection of dpvof(x ) onto Vo is,

N-1 dPvo Pyof(X) = _ < -_xPvof,¢_ > ¢°(x), (54)
l=O

or,

d N-1 N-1Pyo Pyof(X)= _ _ s o < ¢:_,, ¢_ > ¢_(x). (55)
/=0 k=0

The inner product < ¢_0, ¢_) > is one of the results provided in [10].

In the previous paragraph f(x) was expanded in a scaling-function expansion at

the finest scale j = 0. Now f(x) will be expanded in terms of scaling functions and

wavelets at scale j = 1. Recall that V0 = V1 _ 14:1. Now one must project from L2(R)

onto ¼ and from L2(R) onto W1. Let both projections be denoted simultaneously

by Pv, ewl. That is, Pv_ewl : L2(R) _ V_ _ 14:1. Let Pv, ewaf(x) be the projection

of f(x) on V1 _ 14:1. Therefore, the expansion for Pvlewlf(x) is,

N/2-1 N[2-1

Py_ew, f(x)= Y_ s_f_(x)+ _ d_,¢_(x),
k=0 k=0

(56)
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wheredue to the orthonormality of the basis functions ¢_(x) and ¢_(x) the coefficients

s_ and _ are given by

F_}= f(_)_}(_)d_, (57)
O0

and

fd_ = f(x)¢_(x)dx. (58)

The derivative of Pvxe_wlf(x) is

N/2-1 , N/2-_ ,

k----O =

(59)

Once again, the deriyative of Pv_e_w,f(x) does not belong to V1 _W:, and must,

therefore, be projected back onto this space. The projection is,

d

Pv_w__Pv_w_f(_) = (60)

N/2-IN/2-1

1=0 k=O

N/2-1 N/2-1

+ E E _ < _;_,¢_> ¢_(x)
i=0 k=O

N/_-I N/2-1
1 1

1=0 k=O

N/2-1 N/2-1

+ Y: E a_< _;_,¢_ > ¢_(_).
I=0 k=O

The four inner products < ¢'_, ¢_ >, < ¢_, ¢_ >, < ¢_, ¢_ >, and < ¢_, ¢_ > are

the key to finding the derivative of a wavelet expansion, and are provided in [9]. An

outline of the derivation of these inner products is given in the next section.

4.2 Wavelet Coefficients of the Derivative

An arbitrary wavelet expansion of a function might contain wavelet coefficients and

scaling coefficients at many scales. In [9] the projection coefficients that map from

scaling function coefficients and wavelet function coefficients at a given scale to the
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derivative scaling function coefficients and wavelet function coefficients at the same

scale are derived. The matrix elements of these projections are computed from,

= 2-2Jf2

= 2-2J/2

= 2-2J/2

= 2-2J/2

¢(2-Jx - i)¢(2-Jz - l)dx,

¢(2-Jx - i)¢(2-Jx - l)dx,

¢(2-Jx - i)_(2-Jx - l)dx,

¢(2-Jx - i)q_(2-Jz- l)dx.

J
2-J ai_l = all

2-J bi_t = b_t

2-J ci_l = c_l

J
2-Jri_t = rit

(61)

(62)

(63)

(64)

Since the above projections are always at a fixed scale, j, the projection coefficients

are simply,

at=
oO

bl =F
oo

Cl =

r I =

for l E Z. Furthermore, using the

d

¢(x - l)_x¢(X)dx , (65)

¢(z - l) d ¢(x)dx, (66)

fi ¢(x- O C(x)dx, (67)

f_: ¢(x-l)d¢(x)dx, (68)

dilation equation which defines ¢(x), ¢(z) =

Ekhk¢(2x -- k), and the equation which defines ¢(x), ¢(x) = _kgk¢(2x -- k), the

first three of the above four equations become,

L-1 L-1

a, = E Y_ 9kg, r2i+k-t (69)
k=O l=O

L-1 L-I

(70)bi = Y_ _ 9khtr2i+k-t
k=O I=0

L-1 L-1

ci = Y_ Y_ hkg, r2i+k-,. (71)
k=0 /=0

It is apparent from the above equations that the coefficients rl contain all the infor-

mation concerning the derivative. The coefficients rl can be found [9] from solving

the following system of linear algebraic equations:

1 L/2

rl = 2(r2/-+- _ E OL2k-l(r21-2k+l nI- r21+2k-l)), (72)
k=l
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and

where

Irt- -I, (73)

a,=2 _ hihi+,, (74)
i=0

for n = 1,..., L - 1. The proof of the above proposition can be found in [9].

This section has given a brief outline of the derivation of the wavelet derivative

projection coefficients. It is important to note that all the information for the wavelet

derivative is contained in the coefficients {rl}, and this point will be explored more

in next section.

4.3 Derivative at Scale Zero of Scaling Function Only

Wavelet derivatives can be calculated at any level of a wavelet decomposition. The

result will, of course, always be the same. That is, recall the relation from §(2),

Vj = Vj+, @Wj+,. As stated before, it is the convention of this paper to let V0 represent

the finest scale. Using the above relation, one could decompose V0 any number of

times. One decomposition yields V0 = W, @ V,, and a second decomposition yields

V0 = W, _ W2 _3 ½. One could calculate the wavelet derivative in any one of these

spaces. Once again, the goal of this paper is to understand the essence of a wavelet

derivative, and since the derivative is the same regardless of the decomposition of the

space, one should choose the simplest approach and calculate the derivative at scale

j = 0 using only the scaling function coefficients.

This subsection contains four parts:

1. New notation will be introduced.

2. Wavelet decompositions and differentiation matrices will be given for the space

V0 as well as comments on data compression in this space.

3. Wavelet decompositions and differentiation matrices will be given for the space

W1 _ V1 as well as comments on data compression in this space.
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4. Waveletdecompositionsand differentiation matriceswill be givenfor the space

W1 _ W2 @ W3 @ V3 as well as comments on data compression.

4.3.1 New Notation

To simplify the presentation, matrix notation will be used whenever possible. Begin

by defining the matrix version of equations (29) and (30). Recall that these equations

are

and

n=2M

4 = E
n----I

n=2M

Denote the decomposition matrix embodied by these two equations by pj,j+l where• NxN

the matrix subscripts denote the size of the matrix, and the superscripts indicate

that P is decomposing from scaling function coefficients at scale j to scaling function

and wavelet function coefficients at scale j + 1. As before, let _'./contain the scaling

function coefficients at scale j. (Note: When vector notation is used the scale is

given as a subscript, otherwise the location k is the subscript and the scale is the

superscript.) P therefore maps _'j onto gj+a and _+a:

PNj'j+' [ _'+' ] (75)

Note that the vectors at scale j + 1 are half as long as the vectors as scale j. To

illustrate further, suppose the wavelet being used is the four coefficient D4 wavelet,

and suppose one wants to project from 8 scaling function coefficients at scale j to 4

scaling function coefficients at scale j + 1 and 4 wavelet coefficients at scale j + 1.
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The decomposition matrix in this case

hl h2

0 0

0 0

h3 h4psJd+
×8 ---_

91 92
0 0

0 0

g3 g4

is,

h3 h4 0 0 0 0

hi h2 h3 h4 0 0

0 0 hl h2 h3 h4

0 0 0 0 hl h_

g3 g4 0 0 0 0

gl g2 g3 g4 0 0

0 0 gl g2 g3 g4

0 0 0 0 gl g2

Other decomposition matrices of different

above matrix.

(76)

sizes will have the same structure as the

ANxN, BNxN, CNxN, andFor a bit more matrix notation, let the four matrices J J J

R_N×N contain the derivative projection coefficients defined in §(4.2) where, again,

the subscripts denote the size of the matrix and the superscript denotes the scale on

which the derivative projection is acting. The elements of the four matrices are,

A _ aij -" ai-j,

B _ bii = bi-i,

C _ cij = ci-j,

and

R _ rij "- ri-j_

and the mappings performed by the matrices are,

AJ: _ _ d_,

BJ : gj ---_ di,

7
C j : _ _ si,

-I,
Ri : _i _ s i,

where g_ and _, as before, define the scaling and wavelet coefficients at scale j, and

sj and dj denote the coefficients of the expansion of the derivative of a function which

is initially defined by an expansion in g'j and _.

This concludes the new notation.
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4.3.2 Wavelet Expansion and Derivative in

As stated previously, one can calculate the derivative of a wavelet expansion at any

level in the wavelet decomposition. This subsection will explore the first of three of the

options. To be explicit, suppose that a periodic function f(x) has been approximated

on a grid with 16 scaling function coefficients to get go, and for the current argument

assume that the coefficients have been calculated exactly, i.e., the notation go will be

used instead of o_. Furthermore due to the periodicity of f(x) the coefficients go will

also be periodic. The coefficients of the expansion of df(x) in V0 are found from go

by an application of the previously defined matrix/i_ls×16:

s0
s o

80
80
s o

S°o

s°l

s°2

S°a

s°4

a°s

, 8?6

,0
8 0 81

,0
8 0 3 2

"0
.S0 8 3

so
"0

85
"0

86
"0

87

88

"0
810

 1°1
'0

812
"0

813

,0
815
,0

816

which completely defines the derivative of f(x) in

(77)

the scaling function basis at scale

j=0.

For data compression purposes, the space V0 is not a good space to work in. That

is, the coefficients go represent the equivalent of a local averages. In a wavelet basis,

it is often true that the coefficients of local high-frequency oscillations are small and

can be set to zero without altering the character of the function being represented,

but the coefficients of local averages usually represent essential information.
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4.3.3 Wavelet Expansion and Derivative in W1 _ V1

Consider now a decomposition of the vector of scaling function coefficients go onto

the scaling function and wavelet coefficients at scale j = 1 by an application of the

p0,1 .
matrix, 16×16-

80
S_
SO
S0
sO
sO
S0
sO
80
S°o

s1°1

s°2

s°3

s°4

805

s°e

4
s_
s_
s_

0,1 sl,'_.x,.. s J (78)
--* ' d] " '

dl
d_

dl
d_
d_

d_.

As before, we have 16 basis functions in our space which is now V1 (_ W1 rather than

V0. In order to calculate the coefficients of the derivative expansion in V1 (_ W1 the

following projections are calculated:

(79)

and

dl= A_x s • _ + Bl×s • _,

where A, B, C, and R were all defined in the previous subsection.

way to represent the derivative projections is in matrix notation:

I 1

(80)

A more concise

(81)

{ ]O0,1 _tT (T denotes transpose and hence inverse forIf one now applies the matrix t, le×lsj

this unitary matrix) to the derivative coefficients at scale j = 1 then one gets the
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derivative coefficients at scale j = 0:

= _,_ 16X16/ " dl ,

and one gets exactly the same coefficients as before when the matrix R_a6x16 was

applied to s'0. To emphasize, the derivative calculated at scale j = 0 and the derivative

calculated at j = 1 yield exactly the same result. The importance of this observation

is that in order to understand the essence of the wavelet derivative one need only be

concerned with the action of the matrix/i_Nx N on the vector g0.

For data compression the space W1 _ V1 is a fair space to work in. The coefficients

_'1 of the basis functions in V1 represent local averages just as the coefficients of

the basis functions in the space V0 do. However, the basis functions in V1 have

broader support than the basis functions in V0 and therefore represent averages over

a larger amount of data (twice as much data to be exact). Therefore, once again

the coefficients _'1 usually carry essential information. The coefficients _ of the basis

functions in the space W1, on the other hand, carry information concerning local

oscillations. That is, if the function being represented, f(x), is globally smooth then

the coefficients _ will be near zero and can be set exactly to zero without altering the

character of f(x). In the solution of nonlinear partial differential equations where a

sharp gradient, or shock, can develop, the coefficients _ away from the shock would

be close to zero whereas the coefficients near the shock would be large. Therefore,

representing a function in W1 _) V1 is more versatile than simply staying in the space

V0. Versatility continues to be enhanced as one decomposes into more and more

wavelet subspaces as in the next and final scenario.

4.3.4 Wavelet Expansion and Derivative in W1 @ W2 @ W3 @ V3

Up to now our basis functions have all been at the same scale, i.e., initially our

basis functions were contained in Vo, and in the second scenario the basis functions

were contained in V1 and W1. In this subsection, however, the basis functions will
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be contained in spaces at three different scales: W1, W2, W3, and V3. The full set

of coefficients in this case and all the appropriate decompositions leading to these

coefficients are,

s o s_" 's_

s° s_ s]
s o s_ s32

s o sl . s_

so s_ 4
s° st
s° s_
sO o,1 31 1,2P16xl_ Pax8 d_4. 8 .

so --' ,t_ --_ dl
sOo a_ a,_

! s°6. d1 dl• 8, . 8

2,3
P4x4--_ (83)

s?
s_

:4'

.d_4.

aV
d_
d_
d_
d_
d_
d_

In matrix form the projection onto the coefficients of the derivative of the expansion

is, where the matrix will be labeled M,

M .__

B_x2 A_x2 " 4x4'-"4x4

ItS2 [D2,3 _T A42×4J-"4 X 4 t, s 4X41

I -_1,2 ,T • 4x4 0

Baxs(l"a×a) 0 I

( p2,3 ]

" 4X4 0 nl,2 ¢'_I

0 I ] raxs'-'ax8

A_×8

(84)
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and M performs the following mapping:

M"

d _3
8 3 : ,

:4: '_

•_. __ ._
•dV d'_

a: a','

a: 4
a_ d_
d 1

• s . d_

(85)

For data compression, this is the most useful set of subspaces. The space now is

represented as W1 @ W2 @ W3 @ V3. For the same reasons as before the coefficients

of basis functions in the subspace I/3 cannot be ignored. It is likely, however, that

the function f(x) being represented is smooth in most of the domain allowing one

to disregard the majority of the coefficients of the basis functions in the subspace

W1 @ W2 @ W3. In fact, it is more likely that the coefficients for the basis functions

in W1 will be negligible than for the coefficients for the basis functions in W3. This

is because the basis functions in W3 have larger support than the basis functions in

W2 and W1.

In summary, an attempt has been made to illustrate that the derivative coefficients

of a scaling and wavelet expansion can be calculated at any scale. The proper set of

wavelet subspaces depends on the problem at hand. The goal for this author is to

understand exactly what wavelets are and what they are doing, therefore, scale j = 0,

i.e., the space V0, provides the clearest scenario in which to work without sacrificing

essential properties of wavelets.

Given, now, that it is sufficient to work on scale j = 0 to understand exactly
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what the waveletderivative does,one must understandthe ramificationsof applying

the matrix R ° to the vector go. In the next subsection the similarity between the

above defined matrix R ° and finite difference formulas for taking the derivative will

be explored.

4.4 Wavelet Derivatives and Finite Difference

As the previous subsection illustrated, the essential properties of the wavelet deriva-

tive are contained in the elements of the matrix R. Recall that R is the matrix form

of the mapping from g'0 to _'o. The surprising property that the matrix R exhibits is,

however, that it can also differentiate evenly-spaced samples of a function. That is,

R acts as a finite-difference operator when applied to the samples of a function.

This subsection is in three parts:

1. The similarity between wavelet derivative coefficients and finite difference coef-

ficients is noted.

2. The finite difference accuracy of the coefficients {rt} derived in [9] will be illus-

trated, and it will be proved in general that the coefficients {rt} can differentiate

polynomials exactly up through order 2M for coefficients {rt} that were derived

for Daubechies wavelets D2M.

3. In the finite element method under certain conditions one achieves a very high

order of accuracy called 'superconvergence.' In wavelet differentiation a similar

phenomenon is encountered. This phenomenon is defined and a short explana-

tion is offered.

4.4.1 Finite Difference Coefficients

First of all, it is useful to simply note the similarity between the coefficients of centered

finite difference formulas and the coefficients used to construct the matrix R. The
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Order of Accuracy Coefficients

2 _!: 11 22

6 1

8 1 P _ 4iN_4 _ 1204602so 1_-_ g --g- _ s lOS 280

Table 2: Optimal centered finite difference coefficients with order of accuracy.

Wavelet

D2

D4

D6

Convolution Coefficients

0 1

0
0 _72 12 53 16 1

0 ]8_96 365re]_S _39e,2,Ds 2645 128 1
1189272 743295 II99272

Table 3: Scaling function derivativeconvolution coefficientsfor Daubechies wavelets.

following is a table of centered finite difference coefficients and the order of accuracy

of the approximation to the derivative:

Recall that the elements of the matrix R derived in [9] provide the transformation

from scaling function coefficients of a function to the scaling function coefficients of

the derivative of the same function. The elements of R for the D2 and D4 wavelet

derivatives are, as is shown in the following table, exactly the same as the coefficients

for the 2-nd and 4-th order centered finite difference formulas. Note that the wavelet

filters become quite long with increasing order. Therefore, only the right side of the

filter will be shown keeping in mind that these filters are antisymmetric:

The fractions for the D6 and Ds wavelets are exact but complicated and provide

little insight. Compare the following decimal representations of the 6-th and 8-th

order finite difference operators to the decimal representations of D6 and Ds. Once

again, only the right-hand side of these antisymmetric filters is shown:

The coefficients for the Ds and Ds derivatives are not the same as the coefficients

for the 6-th order and 8-th order centered finite difference derivatives, but the dif-

ferences are not large. Surprisingly, however, Ds has the same accuracy as the 6-th

order finite difference operator, and Ds has the same accuracy as the 8-th order finite
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FD-6 and D6 Coefficients

FD-6 0.750 -.150.017

D6 0.745 -.145.015.0003

Table 4: Comparison between numerical values of optimal 6th order centered finite

difference coefficients and Daubechies 6 scaling function derivative convolution coef-

ficients.

FD-8 and Ds Coefficients

FD-8 0.80 -.20.038 -.0036

D8 0.79 -.19.034 -.0022 -.0002.0000008

Table 5: Comparison between numerical values of optimal 8th order centered finite

difference coefficients and Daubechies 8 scaling function derivative convolution coef-

ficients.

difference operator. §4.4.2 will establish this accuracy.

4.4.2 Finite Difference Accuracy

To establish the finite-difference accuracy of the wavelet-based differentiation coeffi-

cients note that a centered-finite-difference derivative approximation with 2K anti-

symmetric, rk -- -r_k implying r0 0, coefficients, g= (rk)k=_K, can be written

K

f(xj) ,v E rk(fj+k - fj-k). (86)
k=l

If the above equation is exact for f(x) = x q for q = 0,...,N but not for q = N + 1

then the equation is said to be N-th order accurate. Therefore, one must check to see

if
K

qx q-1 E rk(Xq+k q= -- Xj_k) , (87)
k=l

when f(x) = x q. To simplify, one can let xj = j and check the following:

K

qjq-' = _ rk((j + k) q - (j - k)q). (88)
k=l

Now, treating the coefficients derived in [9] as nothing more than finite-difference

coefficients one can check the accuracy. The following table contains the results of

applying the coefficients from [9] to various polynomials:
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Wavelet Derivative Exact up to But not for

D 2 3:2 3:3

D4 z 4 x s

D 6 3:6 3:7

D 8 X 8 X 9

Dlo x 1° Z 11

D_2 X 12 X 13

O14 x 14 zl$

DIe 3:16 Z17

Dis x TM X19

Table 6: The degree of polynomials differentiated exactly by various Daubechies

scaling function derivative coefficients.

The pattern in this table is obvious and leads to the following theorem:

Theorem: If ¢(x) is the scaling function for the Daubechies wavelet denoted

by D2M, where M is the number of vanishing moments of the wavelet, then the

coefficients {rt} derived from

r_ = x - l x)dx
CO

and applied the to evenly-spaced samples of a function act as a finite difference

derivative operator of order 2M.

The proof of this theorem requires two results, as well as the Fourier Transform

of ¢(x). First q_(_) will be found followed by the two results which are needed and

stated in theorem form. Perhaps the first proof would suffice assuming the second

result is well-known. However, to be complete the second result is also proved.

Fourier Transform of ¢(x): Recall,

L-1

= E - k).
k=O

Define the Fourier Transform of ¢(x) as,

=
oo
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Therefore,
L-1 co

_(_)= v_ _ hkf_ _(2x- k)e'_kdx.
k=O co

Let y = 2x - k which implies dx = dy/2 to get

= --_ _ hk _ _(y)ei(_/2)(_+k)dy

1 L-1 . ik_. [_o i £

k=O oo

or simply

_(_)=/_(_12)_(_12),

recalling that /:/(_) = :_2 L-1 ---__k=o h_ e_k_" Furthermore, we get q_(_) /:/(_¢/2)/:/(_/4)_(_/4).

This implies,

_(_) = _(0) II _(),
j=l

but ¢(x) is normalized, ¢(0) = f ¢(x)dx = 1. Therefore,

j=l

Theorem: The Fourier Transform of {rt} is of the form,

÷(_)= i_+ _M+_ + h.o.t.,

where c E C is some constant, and 'h.o.t.' denotes higher-order terms and will be

used again in the proof.

Proof." Begin with the expression for {rl}:

Fp(y)= ¢(_- y) ¢(_)dx.
oo

If we define,

f(_)=¢(-_),
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and

g(=)= _¢(=),

then

p(u)= y • g(u)

where '.' is the convolution operator. The convolution theorem states that the Fourier

Transform (continuous or discrete) of a convolution is the product of the Fourier

Transforms:

A

_(_)- f(_)_(_).

If we define rt as,

r, = p(l)

then the semi-discrete Fourier transform of rt is

OO

k_ moo

where,

and
oo

_(_)= 2E rke'k¢"

Calculate the needed Fourier Transforms to get,

](_) =_(_),

where - denotes conjugation, and

_(_)= i_$(_).

Combine these results to get the Fourier Transform of {pt}:

_(_)= I_(_)l_i_.
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Now,we needto know the behaviour of I¢(_)]2. Recall from the definitions that,

= (1 + eie)M(1)MQ(e'e),g(_)

where Q(e ie) does not have poles or zeros at _ = _r, see [2]. That is,/7/(_) has a zero

of order U at _ = _r. Therefore,/7/(_ + _r) has a zero of order U at _ = 0, i.e.,

then

[-I(_ + It) = c_ M + h.o.t.,

][-I(_ 4- r)l 2 = a_ TM + h.o.t.,

where a = Icl 2. Recall from the definitions that,

IHff)l2+ I_(_ + ,_)l2 = 1.

Combine the two previous relations to get,

That is,

I_(_)12-- 1 - a_ TM -t- h.o.t.

d r* A 2
7_:IH(_)I le=o= O,
a_.-

for n = 1, ..., 2M - 1. The Fourier Transform of ¢(x) was found above:

j=-I

We get an expression for Ig(¢)l2from,

= II II ,
j=l j=l

or

I¢ff)l_= H If/( )12.
j=l

Now, derivatives of this expression have the form,

dTl¢ff) = lI IZ:Z()12,
j=l
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d n

and one can see that if, _l/:/ff)l_l_=o -- 0, for n : 1,...,2M - 1, then

-;,I_(_)}_{_=o= o,

for n = 1,...,2M - 1. From this information we can see that a series expansion of

{_ff)l_ about _ = 0 would be of the form,

I_(_)12=, + _' + h.o.t.

But, ¢(x) is normalized implying that 6(0) = 1 and therefore I$(0)1* = 1. The

expansion becomes,

I$(_)1_ = 1+ b__' + h.o.t.,

where b E C. Recall that we are looking for the semi-discrete Fourier transform of

_(¢), which we see from above is,

oo

_(_) = _2 p(_ + 2_-k)=
k __. - (:x:}

oo

i(_ + 2_rk)l_(_ + 2_rk)l2.

We now need to find the behaviour of 1¢(_ + 2_rk)l 2 when k # 0. Note that in the

expression,

the arguement,

I¢(_+ 2_k)l_ = II IH(_ +2;2_k)1_'
j=l

+ 2_rk ( k_"

2J - 2J + 2j------i'

will for some j be equal to

+ 27rk
2J -- 2-7 + 7r,

modulus 2r. That is, if k is odd in the expression (k_r)/(2 j-l) then stop when j = 1

since we can subtract multiples of 27r from (kTr) without changing /7/ since/2/ is 2rr

periodic. If k is even, then for some j, the number (k)/(2 j-l) will be odd at which

point we again subtract some multiple of 2r. Consequently, in the infinite product,

i/_(_I¢;(_ + 27rk)l2= II + 2_rk2J )12,
j=l
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there will always be a term, when k # O, on the right hand side with the form,

IH(_ + _r)] 2. But, from above, we found that,

Ik( + = + h.o.t.

But this implies that for k _- 0 that the contributions to the infinite sum,

oo

+ 2 k)l
k=-oo

are of O(_UM). That is,

or

oo

y_ Iq_(_ + 27rk)[ 2 = 1 + b_ TM + h.o.t.
km._ m _

Ultimately, we need the semi-discrete Fourier transform of {r}:

oo

÷(_) = i y]_ (_ + 2rrk)l,_(5 + 2_'k)l 2,

e(_) = i_ y_ I¢(_ + 2_rk)l2 + 2ri _ kl¢(_ + 2_rk)l2.
k=-oo k=-oo

We already know the behaviour of the first term on the right-hand side. The second

term on the right-hand side cannot contribute powers of _ lower than 2M since it

differs from the summation in the first term only by a multiple of k which does not

allow the low power contribution when k = 0. The final step is to illustate the second

term on the right-hand side is an odd function implying that the lowest power of _ it

can contribute is 2M + 1, the first odd number past 2M. That is, define

f(_,k) = klq_(_ + 27rk)l 2,

and note that in the infinite summation that there is always a term with positive

k and a term with negative k. The summation of all such +k terms and -k terms

yields odd functions.

f(_,k) + f(_,-k) = f(-_,k) + f(-_,-k),
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and this implies the desiredresult leaving us with the conclusionof the proof that,

_(_) = i_ + ib_ 2M+1 + h.o.t.

This completes the proof.//

Lemma: Let {rl} be a finite set of coefficients. These coefficients can be called

the coefficients of a finite difference approximation to a first derivative, or these

coefficients can be called a finite impulse response filter, or FIR filter. Furthermore,

let the coefficients be antisymmetric: rt = -r-t which implies r0 = 0. If the Discrete

Fourier Transform, or DFT, of {rt} is of the form

_(_) = i_ + c_ "_+1 + h.o.t., (89)

for some constant c E C, then the filter {rt} when applied to evenly-spaced samples

of a function can differentiate in a finite difference sense with accuracy of order m.

That is, {rt} can differentiate polynomials exactly up to x '_.

Before the proof, note that the DFT of a filter which is designed to approximate

differentiation in the space domain should approximate i_ in the frequency domain:

---de'_ = i_e'_. (90)
dx

That is, differentiation filters are attempting to approximate the frequency of a pure

sinusoidal mode.

Proof:

Let the DFT for {rt} be defined as,

_(_)= _ r,¢_'.
t

Break up the summation to write as,

_(_1= _o+ _ _,_'_'+ _ _,¢_'.
/>1 I<-1

39

(91)

(92)



Now, imposethe antisymmetry to get,

r(_) = E rt( ei_t - e-i(t) •
1>1

Using the series expansion about zero for the complex exponential one gets,

oo (i_l)k (_i_l)k
_(_)= _ "(_ k! k! )'

i>1 k=O

or factor to get,

_(_)= E r, ooE(i_)k _ (-0_).
t>l k=0 k! _-

Interchange the summations to get,

oo(i_)k
_(_)= E: k! _ r'(t_- (-t)k)"

k=O i>l

(93)

Recall that the hypothesis was that f(_) = i_ + C_ ra+l 3I- h.o.t. This implies that,

(94)

(95)

(96)

0= _ _,(l_- (-t) _) (97)
t>l

for k = 0 and for 2 < k < m. Furthermore, 1 = _t>l rt( lk - (-l) k) must hold when

k = 1. But these are exactly the conditions that must hold for a filter to be able

to differentiate exactly polynomials up through order m which are centered at zero.

The proof for polynomials centered at some arbitrary position requires a shift in the

index but the results are the same. This completes the proof.//

This completes the theorems which are at the heart of the paper. The next section

discusses the high order of accuracy of the coefficients {rt}.

4.4.3 'Superconvergence'

Note that the matrix R ° can differentiate exactly polynomials up to degree 2M for the

Daubechies wavelet D2M when thought of as a finite-difference operator, even though

the scaling function subspace V0 can only represent exactly polynomials only up to

degree M - 1. A Similar phenomenon is encountered in the finite element method
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underparticular choicesof the approximationgrid and is known as superconvergence

[11].

To understand the source of superconvergence in the wavelet derivative it is suf-

ficient to have a good understanding of the proofs in the previous subsection. Let us

note the sources of the powers of _ in the expression for the DFT of the coefficients

{r_}:

Recall the definition of {rt},

_(_) = i_ + c_ 2M+1 + h.o.t.

f_* )_¢(rt = ¢(x - l x)dx,
O0

as well as the definitions of ¢(x) and de(x):

L-1

¢(_) = _ ¢(2_- _),
1=0

L-1

d(x) = 2 _ d(2x-l).
1=0

The sources of the powers of ¢ are now apparent: M powers come from if(x) and M+ 1

powers come from rift(x). The 'superconvergence' for the wavelet derivative can be

explained by the similarity between the equations which define if(x) and dff(x ). That

is, they are defined by dilation equations which differ only by a multiple of 2.

The next section will summarize and conclude this paper.
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5 Conclusion

A restatement of the thesis of this paper is given first followed by a brief outline of

the argument.

Given the evenly-spaced samples of a periodic function, f, then the matrix R °

derived for the Daubechies wavelet D2M has the effect, when applied to f, of a finite-

difference derivative operator of degree 2M.

The heart of the argument of this paper is contained in §(3) and §(4). In §(3) it

was established that if given the evenly-spaced samples of a periodic function f(x)

then the scaling function coefficients s_ of the function at the finest scale can be

approximated by a quadrature formula which in matrix form,

yields a circulant matrix C, where o_ approximates _. Furthermore, in §(3) it was

noted that all circulant matrices with the same dimensions commute. In §(4) it was

noted that the coefficients which map the scaling function coefficients at the finest

scale of a periodic function to the scaling function coefficients at the finest scale of the

derivative of the function is also circulant in form when written in matrix notation,

=

Furthermore, it was observed that the matrix R ° can differentiate evenly-spaced sam-

ples of a polynomial in a finite-difference sense exactly up to the order of the wavelet.

Also, when R ° is applied to the evenly-spaced samples of a periodic function then R °

is circulant. Now, combine the results of §(3) and §(4) to get the following relation:

;,=v-,Roe;.

Throughout the paper it has been noted that C and R ° are circulant in form when

f(z) is periodic and that circulant matrices commute. Therefore, the previous relation

simply becomes,

/, =
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where R ° is acting as a finite difference operator.

A note concerning notation is in order. In the introduction the matrices C, D,

and the differentiation matrix _D were defined. Under the scenario developed in this

paper, the wavelet matrix C is the same as the matrix C from the introduction. The

matrix D from the introduction becomes the matrix R °. Likewise, the matrix/) is

also R ° since for wavelets C and R ° commute. That is, for evenly-spaced samples

and periodicity R ° is the wavelet differentiation matrix which has the effect of a finite

difference operator.

The importance of the thesis of this paper is that under periodicity and an evenly-

spaced grid one can understand the wavelet differentiation matrix in terms of a finite

difference operator with the accuracy given by the superconvergence theorem.
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Appendix A: WaveletsSupported on (0,3M)

In this appendix our wavelets are supported on [0, 3M] where M is the number of

vanishing moments of the wavelet. These are not the usual Daubechies wavelets, but

for these wavelets the scaling function coefficients of a periodic function f(x) can be

approximated with error of order M simply by sampling f(x) at the correct location.

To begin, assume that there exist a unique rM, fixed for a fixed number of vanishing

moments, M, of the wavelet, such that

¢(X -4- VM)xmdx
0

for m = 1,2,...,M- 1. Furthermore, recall the definition of the scaling function

coefficient and expand the integrand f(x) in a Taylor series about Xo (f_ = f'(x0)):

= / f(x)C(x-3Ok k )dx
J

f0

Now, shift the variable of integration by y = x - T -- k, and choose the point of

expansion, x0, to be r + k to get,

sO=

f(v + k)/¢(y 4-v)dy-I- S'(Y-t- k) /y¢(y-I-T)dy A- f"(y-I-k) /y2¢(y-I-7")dy + ....

Now, rename _" as TM and the above integrals are of the form,

¢(Z TM)ZmdX = O,
+

and therefore vanish for m = 1, ..., M - 1 leading to,

s°k = f(rM + k) + f(M)(rM + k) f yM ¢(y + rM)dy + ...,

i.e., the approximation of the scaling function coefficient s_ up to order M is made

by sampling f(x) at the position 7"M "4-k.
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Note that all of the above calculations could have been carried out for the first

"0derivative of f(x) giving an approximation to the scaling function coefficients, sk, of

f'(x):

,0 " /sk= I(7-+ k) + f(M+I_(7-+ k) yM¢(y+ 7-)dy+ ....

It was assumed above that there exist one rM such that

f ¢(x+ 7-,,)xmd_= O,

for m = 1, ..., M - 1. For m = 1 this 7-M is easy to find:

/ ¢(z'4- 7-M)xdx = / ¢(x)(x -- 7"M)dx

= / x¢(x)dx- 7-M / q_(x)dx.

But f ¢(x)dx = 1, therefore,

7-_,= f _¢(x)d_.

That is, 7-M is simply the first moment of ¢(x). To find 7"M for m > 1 the calculations

are simple but a bit longer and require the result from the following theorem to show

that there is one 7-M which is the same for all m = 1, ..., M - 1.

If f ¢(x)dx = 1 and there exists 7-such that f ¢(x+7-)x mdx = 0 for m = l, ..., M- 1

then f ¢(x)xmdx = (f ¢(x)xdx) m for m = 1,...,M - 1.

Proof: Start with

and let y = x + 7- to get,

x + r)x_dx = O,

f¢(y)(y- 7-F = 0.

Using the binomial theorem this becomes,

=0.
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Let the moments of ¢(x) be denoted by Mt = f ¢(x)xtdx to get

r----O r

A simple calculation yields v = M1. Using this value of r and summing only up to

m - 1 the previous expression becomes,

r=O r

Or,

m_l()Mm =- ___ m (_l)m_,.(M1)m_,.Mr.
r=O r

From the hypotheses it is known that Mo = f ¢(x)dz = 1. Therefore, Mp = M{ ° for

p = 0, l, and with this knowledge it is easy to show that Mp = M_ for p = 2:

Mm =- Y_ m (_l)m_r(M,),,,_rM;,
r=O r

which holds for m = l, 2. Combine the powers of M1 to get,

Mm=-Mr m
r=O r

But, this is nothing more than,

Mm = -M_"[(1- 1) m- 1],

or simply,

where m = 1,2.

induction.

Mr,, = M_,

The proof is complete, since higher powers of m can be found by
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Appendix B: Moments of the Scaling Function

In this appendix the moments of ¢(x) will be cMculated in closed form. Begin

with the definition of the scaling function,

¢(x)= E ¢(2x- k).
k

Next, calculating the m-th moment of ¢(x) yields,

f ¢(z):' = _:hk f ¢(2z- k)z"dz.

Change the variable of integration such that y = 2x - k to get,

f ¢(z)x"* = E hk f d_(y)(1/2)'(y + k)'_l/2dy,
k

= (1/2) rn+' _ h_ / _b(y)(y + k)'ndy.

Now, recall the binomial theorem to get,

f ¢(:r)x"' = (1/2)""+' _'_hk / ff(Y) _" ( m ),,=0 l ytk"*-tdy

Rewrite the moments of ¢(x) as Mt = f xtff(z)dz to get,

M_ = (1/2: ÷' t Ehkk_-_M'•
l=O k

Now let pt = _k hk kt to get

M_ = (1/2) _÷1 l ___M_.
1----0

Now, M,_ can be defined in terms of Mi for i = 0,..., m - 1:

-,()M_(2_÷1-21- E m
t=o l p_-t Mt.

Note that the moments pt can be found by direct calculation given that the Daubechies

filter coefficients, hk, are already known.

The moments of ¢(x) can now be used to find the mapping from the evenly-

spaced samples of a function f(x) to the scaling function coefficients. In section 3
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i M_ _ ¢_

0 1 2 .3661 .

1 .63395 1.2679 .6340

Table 7: Scaling function moments for the Daubechies 4 wavelet.

i M_ /z_ c,

0 1 2 -.0235

1 1.0054 2.0108 1.0426 .

2 1.0108 2.0216 -.0199

3 .90736 .5078 .0009

Table 8: Scaling function moments for the Daubechies 8 wavelet.

this mapping was denoted in matrix form as the matrix C. The elements ci which

define the rows of this matrix have already been given for the wavelet De. The

comparable results for the D4 and Ds wavelets are given in the accompanying tables.
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